$7^{1}_{1}$ - Minimal pinning sets
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning data
- Pinning number of this loop: 5
- Total number of pinning sets: 4
- of which optimal: 1
- of which minimal: 1
- The mean region-degree (mean-degree) of a pinning set is
- on average over all pinning sets: 2.46429
- on average over minimal pinning sets: 2.0
- on average over optimal pinning sets: 2.0
Refined data for the minimal pinning sets
Pin label |
Pin color |
Regions |
Cardinality |
Degree sequence |
Mean-degree |
A (optimal) |
• |
{1, 2, 3, 4, 6} |
5 |
[2, 2, 2, 2, 2] |
2.00 |
Data for pinning sets in each cardinal
Cardinality |
Optimal pinning sets |
Minimal suboptimal pinning sets |
Nonminimal pinning sets |
Averaged mean-degree |
5 |
1 |
0 |
0 |
2.0 |
6 |
0 |
0 |
2 |
2.5 |
7 |
0 |
0 |
1 |
2.86 |
Total |
1 |
0 |
3 |
|
Other information about this loop
Properties
- Region degree sequence: [2, 2, 2, 2, 2, 5, 5]
- Minimal region degree: 2
- Is multisimple: No
Combinatorial encoding data
- Plantri embedding: [[1,1,2,2],[0,3,3,0],[0,4,4,0],[1,4,4,1],[2,3,3,2]]
- PD code (use to draw this loop with SnapPy): [[5,10,6,1],[9,4,10,5],[6,2,7,1],[3,8,4,9],[2,8,3,7]]
- Permutation representation (action on half-edges):
- Vertex permutation $\sigma=$ (6,1,-7,-2)(4,9,-5,-10)(10,5,-1,-6)(2,7,-3,-8)(8,3,-9,-4)
- Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)
- Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,6)(-2,-8,-4,-10,-6)(-3,8)(-5,10)(-7,2)(-9,4)(1,5,9,3,7)
Loop annotated with half-edges